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Abstract

A clustering procedure for the rows of a two-way contingency table has been
proposed in Hirotsu (1983a) and verified to be useful on several occasions as
compared with other multiple comparison approaches, see Greenacre (1988)
and Hirotsu (1993). It is essentially Scheffé type multiple comparisons and
Hirotsu (2009) raised its power by introducing a generalized squared distance
among any number of clusters. It is usually easy to obtain and interpret those
significant clusters when the number of rows is small, say, up to 10. How-
ever, if it is more than 10, we need some stopping rule working automatically
for obtaining a significant clustering with the reasonable number of clusters.
One of the purposes of the present paper is therefore to propose such a stop-
ping rule. When there is a natural ordering in the columns the procedure is
essentially unchanged excepting the definition of the squared distance among
clusters reflecting the natural ordering and the related distribution theory.
The related distributions are those of the largest eigen root of the orthogonal
and non-orthogonal Wishart matrices for the nominal and ordinal columns,
respectively. When the columns are nominal the rows and columns are sym-
metrically dealt with and Scheffé type multiple comparisons can be applied
simultaneously to rows and columns. For the ordinal columns, however, we
are not interested in all the permutations of them and apply the change-point
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type contrasts to columns. Then the related asymptotic distribution is that
of the max accumulated chi-square, which is the maximum of the correlated
chi-squares (Hirotsu et al., 1992).

Keywords: Exact algorithm, Generalized squared distance, Ordinal
categories, Row-wise multiple comparisons, Stopping rule, Wishart
distribution

1. Introduction

An overall goodness of fit chi-squared test for independence is a well
known approach to a contingency table. It cannot, however, give any de-
tailed information on the association between the rows and columns. On the
other hand the multiple comparison approach based on one degree of freedom
chi-squared variable is less powerful and the result of the analysis is often
unclear since the total degrees of freedom for interaction is usually so large.
Therefore the row-wise multiple comparisons have been proposed in Hirotsu
(1983a) and verified to be useful in several occasions as compared with other
multiple comparison approaches, see Greenacre (1988) and Hirotsu (1993).
The idea has been shown to be useful also for the two-way ANOVA model in
Hirotsu (1983b, 1991) and Hirotsu et al. (2003). They are nothing but the
multiple comparisons of the treatment effects if the data are taken as the one-
way layout with categorical responses instead of the usual normal variables.
The row-wise multiple comparisons proposed are essentially Scheffé type and
naturally lead to clustering of rows so that the rows within a cluster are
homogeneous and a large deviation from independence exists only among
clusters. This gives a simple structure of the association between the rows
and columns. In particular the generalized squared distance among clusters
introduced in Hirotsu (2009) raised the power of the multiple comparisons.
It is usually easy to obtain and interpret those significant clusters when the
number of rows is not large. However, if it is large it is impossible to search
all the possible classifications and obtain an optimal clustering in any sense.
So in Section 6 of the present paper we propose a stopping rule working auto-
matically for obtaining significant classification into the reasonable number
of clusters. In Section 2 we explain the notation and the overall goodness of
fit chi-square is described according to the notation. In Section 3 several def-
initions of the squared distance are given including the generalized squared
distance among any number of clusters. They are extended in Section 4 to
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the case where there is a natural ordering in columns. Section 5 is for the al-
gorithm to obtain the reference value. Section 7 is for clustering columns and
Section 8 is for real examples. Finally in Section 9 the concluding remarks
are stated.

2. An overall goodness of fit chi-square

2.1. The notation and an overall goodness of fit chi-square

Following the notation in Hirotsu (2009) let a two-way contingency table
be denoted by {yij}a×b and the row, column and the grand totals by Ri =
yi� (i = 1, · · · , a), Cj = y�j (j = 1, · · · , b) and N = y��, respectively, where
we employ the usual dot notation to express the summation with respect to
the suffix replaced by dot. We assume a multinomial distribution for the cell
probabilities {pij | p�� = 1}. The null hypothesis of interest is then

H : pij = pi� p�j for all i and j,

and the statistical inference is based on the conditional distribution given
{Ri} and {Cj}. For the row-wise multiple comparisons define

r = N−1/2
(√

R1, · · · ,
√

Ra

)′
, c = N−1/2

(√
C1, · · · ,

√
Cb

)′
and then define R′

a−1×a and C ′
b−1×b so that

(
r′

R′

)
and

(
c′

C′

)
are the a- and

b-dimensional orthogonal matrices, respectively, where the prime denotes a
transpose of a matrix. Define a column vector z with the elements zij =
yij/
√

RiCj/N arranged in the dictionary order. Then under the null hy-
pothesis H the conditional expectation and variance of (R′ ⊗ C ′) z given Ri

and Cj are

E{(R′ ⊗ C ′) z} = O(a−1) (b−1),

V {(R′ ⊗ C ′) z} = (N/(N − 1)) I(a−1) (b−1)

where On and In are n-dimensional zero vector and the identity matrix,
respectively and ⊗ denotes a Kronecker product. It should be noted that in
(R′ ⊗ C ′) z every row of R′ is constructing the orthogonal contrast in rows
and similarly for the row of C ′. In the following we ignore the coefficient
(N/(N − 1)) in the variance since our example of the contingency table is
usually large. Then

χ2 = ∥ (R′ ⊗ C ′) z ∥2
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is nothing but the goodness of fit χ2 for H and every element of (R′ ⊗ C ′) z
gives the partition of χ2 into one degree of freedom, where ∥ � ∥2 denotes the
squared norm of a vector.

2.2. The largest root of a Wishart matrix

Another important overall test is given by the largest root

W1 = max
γ′r=0, ∥γ∥=1

∥ (γ ′ ⊗ C ′) z ∥2 (1)

whose asymptotic null distribution is shown to be that of the largest root
of the Wishart matrix W

(
max(a− 1, b− 1), Imin(a−1, b−1)

)
. This reference

distribution has been introduced in Hirotsu (1983a) and employed by the
other authors including Greenacre (1988). The squared distances among
clusters introduced in the next Section are bounded above by W1 so that we
can use the upper tail probability of the largest root of the Wishart matrix
as the reference value.

3. The generalized squared distance among any number of clusters
of rows

Without any loss of generality we assume a partition of rows into m
clusters: G1 = {1, · · · , q1} , G2 = {q1 + 1, · · · , q1 + q2} , · · · ,
Gm = {q1 + · · ·+ qm−1 + 1, · · · , q1 + · · ·+ qm}.
Then the generalized squared distance among them is defined by

χ2 (G1; · · · ;Gm) = max ∥ (γ ′ ⊗ C ′) z ∥2, (2)

where the maximization is taken with respect to γ = (γ1, · · · , γa)′ under the
restriction

γ ′r = 0, ∥γ∥ = 1,

γi ≡ λk (Ri/Tk)
1/2 , i ∈ Gk, Tk =

∑
i∈Gk

Ri, k = 1, · · · ,m.

It is actually the maximization by λ = (λ1, · · · , λm)
′ under the restriction

m∑
k=1

√
Tkλk = 0,

m∑
k=1

λ2
k = 1 (3)
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The basic idea is to give a constant coefficient for the rows within a cluster
so that it cannot contribute to the maximization.

Let Yij =
∑

i∈Gk
yij, k = 1, · · · ,m, denote the frequency of the kth

clusters at the jth column so that {Ykj} gives the m× b table with the row
total Tk collapsing those pooled rows. Then eq.(2) reduces to

χ2 (G1; · · · ;Gm) = max λ′

 w′
1
...

w′
m

 (w1, · · · ,wm) λ (4)

with

wk = (Tk/N)−1/2 C ′
(
C

−1/2
1 Yk1, · · · , C−1/2

b Ykb

)
(5)

In particular we have

W
(√

T1, · · · ,
√
Tm

)′
=
∑
k

√
Tkwk = NC ′c = 0

suggesting
(√

T1, · · · ,
√
Tm

)′
to be the eigen vector of W ′W corresponding

to a zero root, where W = (w1, · · · ,wm). Then the maximization reduces to
the problem of the largest root ofW ′W and the condition (3) is automatically
satisfied. The statistic (4) is the same type of statistic for the pooled m× b
table as (1) from the original a×b table and obviously coincides with it when
m = a and all the clusters are composed of a single row.

By restricting the vector γ in appropriate ways we can introduce the
squared distances between two rows or between two clusters.

The squared distance between the two rows i and i
′
:

χ2(i; i′) = ∥ (r′(i; i′)⊗ C ′) z∥2,

r′(i; i′) =

(
1

Ri

+
1

R′
i

)−1/2 (
0 · · · 0R−1/2

i 0 · · · 0 −R
−1/2
i′ 0 · · · 0

)
,

i, i′ = 1, · · · , a.

The squared distance between the two clusters G1 = {1, · · · , q1} and
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G2 = {q1 + 1, · · · , q1 + q2} :

χ2(G1;G2) = ∥ (r′(G1;G2)⊗ C ′) z∥2,

r′(G1;G2) =

(
1

T1

+
1

T2

)−1/2

×

(√
R1

T1

· · ·
√

Rq1

T1

−
√

Rq1+1

T2

· · · −
√

Rq1+q2

T2

0 · · · 0

)
,

T1 =
∑
i∈G1

Ri, T2 =
∑
i∈G2

Ri.

Those squared distances are obviously bounded above by (1).

4. An extension to the natural ordering in columns

In the case where there is a natural ordering in columns we are interested
in distinguishing the up- or down-ward tendency along with the columns.
For the purpose an order sensitive squared distance has been proposed in
Hirotsu (2009). It is based on the cumulative chi-squared statistic which is
originated from the complete class lemma for testing the ordered alternatives
(Hirotsu, 1982). The method simply replaces the matrix C

′
by C∗′ in the

definition of the squared distances in Section 3, where the jth row of C∗′ is

c∗
′
(j; j′) =

(
1

Uj

+
1

U j

)−1/2
(√

C1

Uj

· · ·
√

Cj

Uj

−
√

Cj+1

U j

· · · −
√
Cb

U j

)
(6)

with

Uj =

j∑
k=1

Ck, U j =
b∑

k=j+1

Ck, for j = 1, · · · , b− 1.

We call the vector c∗
′
(j; j′) a change-point type contrast. Then in case of

a ⩾ b the reference distribution is obtained as the largest root W ∗
1 of the

non-orthogonal Wishart matrix W
(
a− 1, C∗′C∗), where C∗′C∗ = {ρjk} is

made from

ρjk =
√
δj/δk, 1 ⩽ j ⩽ k ⩽ b− 1 (7)

with δj =
Uj

U j

=
C1 + · · ·+ Cj

Cj+1 · · ·+ Cb

.
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5. Algorithm for the reference value

5.1. The largest root of the Wishart matrix W (ν, Iq)

We employ the formula based on the tube method in Kuriki and Takemura
(2001). Our function computes

Pr(W1 ⩾ λ0) =

min(q,ν)−1∑
e:even, e=0

δq+ν−1−eGq+ν−1−e(λ0),

δq+ν−1−e =

√
πΓ(q)Γ(ν)

Γ(q/2)Γ(ν/2)

(
−1

2

)e/2

×
Γ
(
1
2
(q + ν − 1)− 1

2
e
)

Γ(q − e/2)Γ(ν − e/2)(e/2)!
,

where Gl is the tail probability of the chi-squared distribution with the de-
grees of freedom l.

5.2. The largest root of the non-orthogonal Wishart matrix W (a− 1, C∗′C∗)

We employ the chi-squared approximation dχ2
ν proposed in Hirotsu (2009),

where d and ν are determined by the equation

dν = E(W ∗
1 ) = nρ1 +

(
1− 2

n

) p∑
2

ρ1ρj
ρ1 − ρj

+
2

n

∑∑
2⩽j<k⩽p

ρ1ρjρk
(ρ1 − ρj)(ρ1 − ρk)

,

2d2ν = V (W ∗
1 ) = 2nρ21 +

−2n3 + 32n+ 144

n3

p∑
2

(
ρ1ρj

ρ1 − ρj

)2

+
2 (n2 + 6n− 4)

n2

∑∑
2⩽j<k⩽p

ρ21ρjρk
(ρ1 − ρj)(ρ1 − ρk)

.

with p = b − 1, n = a − 1 and ρj the jth largest root of C∗′C∗. Therefore
the tail probability is approximately given by

Pr(W ∗
1 ⩾ λ∗

0) ≈ Gν(λ
∗
0/d)

The approximation improves Anderson (2003) and Hirotsu (1991).
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6. Stopping rule

6.1. Clustering algorithm into the prespecified number K of clusters

We employ the algorithm proposed in Hirotsu (2009) for obtaining a
classification such that the generalized squared distance among clusters is
large achieving simultaneously the homogeneity within each cluster.

(i) Specify K the number of clusters.

(ii) Start from a clusters each of which is composed of one row.

(iii) Let G1, · · · , Ga−k+1 be the cluster at the kth stage. Find two clus-
ters Gi and Gi′ that give the smallest squared distance χ2(Gi;Gi′)
based on (3) among all the possible combinations of two clusters from
G1, · · · , Ga−k+1. Then, combine those two clusters to form (a − k)
clusters for the next (k + 1)th stage.

(iv) Continue the procedure (iii) until the number of clusters becomes the
prespecified numberK. The resulting partition is denoted byG1, · · · , GK .
Then make an adjustment by the next algorithm.

(v) First, calculate the squared distance between the row 1 and the clusters
G1(1), · · · , GK(1), where Gk(1) denotes that the row 1 is eliminated
fromGk. Then, classify the row 1 into the cluster that gives the smallest
squared distance χ2(1;Gk(1)) among k = 1, · · · , K. Do the same thing
between the row 2 and the renewed clusters with row 2 eliminated.
Continue the process repeatedly until no reduction in the generalized
squared distance χ2(G1; · · · ;GK) is obtained.

6.2. Stopping rule

We begin with K = 2 and continue the process until the generalized
squared distance among the clusters (G1, · · · , GK) becomes significant for
the first time at the pre-specified level α1. Then we evaluate the variation
within each cluster by the maximum eigen root at level α2. If all the K
clusters show the non-significant within variation we stop here concluding
there are K clusters and give the interpretation of them. Example 2 at
K = 2 is typical for this case. If all the K clusters show the significant
within variation we proceed to the K + 1 clusters and continue the process.
As an intermediate case let the within variation be significant for n clusters
and non-significant for m(= K − n) clusters. Then we fix those m clusters
and apply the clustering procedure anew to the rows in n clusters. As an
example we obtain a significant classification at K = 2 in Example 1 with
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two clusters G1 = (1, · · · , 7) and G8 = (8). The within variation in G1 is
significant so that n = m = 1 in this case. We fix and eliminate G8 and
apply the clustering procedure anew to G1. In this particular case we need
not adjust the significance level α1 since it follows the closed testing procedure
by Marcus, Peritz and Gabriel (1976). It suggests that it is reasonable to
take α2 = α1 since otherwise we apply different α’s to G1 in testing within
variation and in clustering procedure, respectively. We apply this generally
in the following since there is no reason to choose any other particular value
for α2. The subgroup G1 was not analyzed separately but analyzed as a part
of the original table in Hirotsu (2009). It leads to putting the coefficient γj to
zero for the eliminated rows in calculating the generalized squared distance
among the clusters from G1. Then the maximization does not reduce to the
maximal eigen root problem and require a very complicated optimization
procedure. The difference is only in the treatment of the column totals
of the two-way table and there is only a slight difference in the outcome.
Therefore we deal with G1 independently from the eliminated rows in this
article. In the general case of m > 1 we also apply the same level α1 for
the generalized squared distance in the sub-table composed of the n clusters
after eliminating the m clusters.

7. Clustering columns

7.1. Both of the row and column categories are nominal

If both of the row and column categories are nominal without ordering
then we can deal with the rows and columns symmetrically. Therefore we
can apply the common Wishart distribution W (max(a− 1, b− 1), I(a−1,b−1))
for the columns as for rows, see Example 1.

7.2. Only the column categories are ordinal

Because of the natural ordering all the permutations of columns do not
make sense and we are interested in the (b− 1) change-point type contrasts
defined by the rows of C∗′ . Then the reference distribution is that of

maxχ2(C∗′) = max
j

∥∥∥{R′ ⊗ c∗
′
(j; j′)

}
z
∥∥∥2 ,

where c∗
′
(j, j′) is the jth row of C∗′ as defined in (6). It is asymptotically that

of the maximum of the correlated chi-squared variables and a very efficient
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algorithm for the p-value is given in Hirotsu et al. (1992) based on the Markov
property of the successive components. The explicit form of the cumulative
distribution function is given below and we realized it up to b = 5 as an R
system, where ρjk is given in (7) and Gl(x) is the cumulative distribution
function of the chi-square distribution with the degrees of freedom l.

b = 3 Pr(maxχ2(C∗′) ⩽ c)

=
(
1− ρ212

) ν
2

∞∑
k=0

ρ2k12
Γ
(
ν
2
+ k
)

Γ
(
ν
2

)
k!

Gν+2k

(
c

1− ρ212

)2

b = 4 Pr(maxχ2(C∗′) ⩽ c)

=

{
(1− ρ212)(1− ρ223)

1− ρ213

} ν
2

×
∞∑
k=0

{
ρ212(1− ρ223)

1− ρ213

}k

Gν+2k

(
c

1− ρ212

)
×

∞∑
m=0

{
(1− ρ212)ρ

2
34

1− ρ212

}m

Gν+2m

(
c

1− ρ223

)
×
Γ
(
ν
2
+ k +m

)
Γ
(
ν
2

)
k!m!

Gν+2k+2m

(
(1− ρ213) c

(1− ρ212)(1− ρ223)

)

b = 5 Pr(maxχ2(C∗′) ⩽ c)

=

{
(1− ρ212)(1− ρ223)(1− ρ234)

(1− ρ213)(1− ρ224)

} ν
2

×
∞∑
k=0

{
(1− ρ212)ρ

2
23(1− ρ234)

(1− ρ213)(1− ρ224)

}k ∞∑
m=0

{
(1− ρ223)ρ

2
34

1− ρ224

}m

×
Γ
(
ν
2
+ k +m

)
Γ
(
ν
2

)
k!m!

Gν+2k+2m

(
(1− ρ224) c

(1− ρ223)(1− ρ234)

)
Gν+2m

(
c

1− ρ234

)
×

∞∑
j=0

{
ρ212(1− ρ223)

1− ρ213

}j Γ
(
ν
2
+ k + j

)
Γ
(
ν
2
+ k
)
j!

×Gν+2k+2j

(
(1− ρ213) c

(1− ρ212)(1− ρ223)

)
Gν+2j

(
c

1− ρ212

)
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If the maxχ2(C∗′) is significant between j and j + 1 we apply anew the
procedure to each of the subgroups G1 = (1, · · · , j) and G2 = (j + 1, · · · , b).
If the maxχ2 is not significant at any stage we stop there concluding the
subgroups are homogeneous.

7.3. Both of the row and column categories are ordinal
We apply the change-point type contrasts to both of rows and columns.

There are (a−1) cut points in rows and (b−1) cut points in columns so that
we have (a− 1)(b− 1) sub-tables. We take the maximum goodness of fit χ2

of those 2× 2 tables and call it maxmaxχ2(R∗′ × C∗′),

maxmaxχ2(R∗′ × C∗′) = max
1⩽i⩽a−1

max
1⩽j⩽b−1

∥∥∥(r∗′(i; i′)⊗ c∗
′
(j; j′)

)
z
∥∥∥2

where R∗′ and r∗′(i; i′) are similarly defined as C∗′ and c∗
′
(j; j′). The exact

algorithm for the distribution function of maxmaxχ2 is given in Hirotsu
(1997). Let

YIJ =
∑
i⩽I

∑
j⩽J

yij, RI =
∑
i⩽I

Ri, CJ =
∑
j⩽J

Cj

and

Y ∗
IJ =

(
YIJ − RICJ

N

)(
RI(N −RI)CJ(N − CJ)

N3

)−1/2

be the standardized version of Yij. Define a conditional probability

Fk(Yk) = Pr {Y ∗
1 ≤ cj , · · · ,Y ∗

k ≤ cj |Yk} ,

where Yk = (Y1k, · · · , Yak)
′ and Y ∗

k ≤ cj means Y ∗
Ik < c for I = 1, · · · , a− 1.

It should be noted here that Yak is a fixed marginal total. Then we have a
recurrence formula

Fk+1(Yk+1) =
∑
Yk

Fk(Yk)f(Yk |Yk+1)

where f(Yk |Yk+1) is a conditional probability of Yk given Yk+1. To be exact
define a matrix

D =


1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1


a×a
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then DYk is distributed as a multinomial given the row total DYk+1 and
the column total Yak. The p-value is obtained finally by 1 − FK(YK). The
algorithm is realized as the R system.

8. Examples

8.1. Israeli adults cross classified by principal worries and residence places

Greenacre (1988) applied the method of Hirotsu (1983a) for clustering
the rows and columns of the 8 × 5 contingency table reported by Guttman
(1971). It cross tabulates 1554 Israeli adults according to the row categories
of principal worries and the column categories depending on their place of
residence and that of their respective fathers. The row categories are as
follows:

(i) OTH-other worries

(ii) POL-political situation

(iii) MIL-military situation

(iv) ECO-economic situation

(v) ENR-enlisted relative

(vi) SAB-sabotage

(vii) MTO-more than one worry

(viii) PER-personal economics.

First applying the clustering procedure to rows we obtain a highly sig-
nificant squared distance 77.90 between the clusters G1(1, 2, 3, 4, 5, 6, 7) and
G8(8) at K = 2 for the reference value 23.55 at α = 0.05 from Wishart
distribution W (7, I4). The within variation 24.66 of the cluster G1 eval-
uated as the largest root of W (6, I4) is significant with the p-value 0.018.
Therefore we separate G8 and apply the clustering procedure anew to G1.
The generalized chi-squared distances χ2(1; 2, 3, 4, 5, 6, 7) = 20.77 at K =
2 and χ2(1; 2; 3, 4, 5, 6, 7) = 20.99 at K = 3 are non-significant as the
largest root of W (6, I4) and we obtain a significant result first at K =
4 with the chi-squared distance χ2(1; 2; 3, 4; 5, 6, 7) = 23.195 and the re-
lated p-value 0.030. The generalized squared distance among five clusters
G1(1), G2(2), G3(3, 4), G5(5, 6, 7), G8(8) is 91.81 and its relative contribution
to the largest root 92.73 of the original table is 0.99.

Now, the software first present the original data, calculate the Wishart
matrix W ′W via the vector wk (5) with m = a and its largest root as 92.73
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which is evaluated as highly significant by the Wishart W (7, I4) distribution.
Then the clustering algorithm starts for the prespecified number of clusters
K = 2, · · · , 8. The search for significant clustering at prespecified α = 0.05
goes like this. First try K = 2 to find clustering into G1(1, · · · , 7) and
G8(8) is highly significant with p-value 0.13× 10−10. Then check the within
variation of sub-clusters to find G1 is inhomogeneous with p = 0.018 by the
Wishart W (6, I4). Therefore re-clustering of G1 starts to obtain a significant
clustering first at K = 4 with the generalized squared distance 23.20 and
the related p-value 0.030. The within variations of sub-clusters G3(3, 4) and
G5(5, 6, 7) are evaluated non-significant with the p-values 0.949 and 0.718
by the Wishart W (4, I1) and Wishart W (4, I2), respectively. Therefore the
algorithm stops here and gives the summary of classification, the generalized
squared distance among sub-clusters 91.84 and its contribution 0.99 to the
original largest root 92.73.

In this case, however, the number of clusters 5 is too large for a = 8
and the relative contribution looks excessively high. Therefore we may try
other significance level α = 0.10, say. Then we can separate the row 1 from
G1 with p-value 0.081. The within variation in the counterpart sub-cluster
G2(2, · · · , 7) is 15.17 with the p-value 0.19 by the Wishart W (5, I4) and the
algorithm stops here. The relative contribution of G1(1), G2(2, · · · , 7) and
G8(8) is still 0.88 and reasonably high.

Since the column categories are also nominal we can apply the same
procedure as rows and obtain a significant clustering G1(1, 2) and G3(3, 4, 5)
at K = 2. Applying the largest root test to each of G1 and G3 the latter is
found to be homogeneous. On the other hand the largest root 24.55 of G1 is
inhomogeneous at α = 0.05 and it immediately suggests that G1 should be
separated into G1(1) and G2(2) since this is only one possible classification.
The generalized squared distance 90.54 among G1, G2, G3 explains 98% of
the largest root 92.73 of the original table. If we employ α = 0.10, we have
the same result.

The collapsed data and the simple departure measures from independence
yij/(RiCj/N) are given in Table 1. It is seen that the row 8 is strongly asso-
ciated with the cluster G3(3, 4, 5) of columns. Row 1 is strongly associated
with column 2 and the cluster G2(2, · · · , 7) of rows is associated with column
1.

Table 1 about here
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8.2. Cancer patients cross classified by their occupation and initial condition
of illness

The data of Table 2 were first analyzed in Hirotsu (1977), where a highly
significant classification intoG1(1, 2, 3, 6, 7, 9) andG4(4, 5, 6, 10) was obtained
based on the cumulative chi-squared statistics reflecting on the ordinal nature
of column categories. Then to evaluate the within variation of G1 and G4

the largest roots W ∗
1 (1, 2, 3, 6, 7, 9) = 3.37 and W ∗

1 (4, 5, 8, 10) = 2.83 are
calculated. Then the respective p-values of W ∗

1 are obtained as 0.86 and
0.34 by the chi-squared approximation for the largest root of W (5 : C∗′

1 C
∗
1)

and W (3 : C∗′
4 C

∗
4), where the matrices C∗′

i C
∗
i , i = 1, 4 are calculated by the

equation (6). Therefore the procedure stops here concluding there are two
clusters.

Since the column categories are ordinal we apply the change-point-type
contrasts for clustering columns and find the max χ2(C∗′) to be 91.25 and
highly significant for the partition F1(1) and F2(2, 3) by the method of Sec-
tion 7.2 with b = 3. The max χ2(C∗′) for the cluster F2(2, 3) is 5.23 and
non-significant as the chi-squared with 9 degrees of freedom. Therefore we
conclude there are two clusters F1 and F2. The collapsed data in two-ways
and their simple departure measures yij/(RiCj/N) are given in Table 3. The
cluster G1 is clearly characterized by the high proportion of the slight con-
dition F1 relatively to G4.

Table 2 about here

Table 3 about here

The result of clustering suggests a simple block interaction model

pij = pi� p�j θℓm,

(
ℓ = 1 for i = 1, 2, 3, 6, 7, 9; ℓ = 2 for i = 4, 5, 8, 10
m = 1 for j = 1; m = 2 for j = 2, 3

)
with the parameter θ for interaction with only one degree of freedom. The
goodness of fit chi-square reduces from 95.75 of the independence model to
8.04 by adding only one parameter for interaction. The fitted values are
in the right side of the original data with upper column from independence
model and the lower column from block interaction model. It is seen that
the improvement of fit is remarkable.
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9. Concluding remarks

The row- and column-wise multiple comparison procedures have been pro-
posed for a two-way contingency table. In particular the change-point type
contrasts were employed for reflecting the up- and down- ward tendency along
with the ordinal categories. The p-value calculations were implemented for
the largest root of an orthogonal and non-orthogonal Wishart matrices. For
evaluating the maximum of the correlated chi-squared statistics a recurrence
formula was also implemented. A stopping rule working automatically for
obtaining a clustering of rows and columns into a reasonable number of clus-
ters was introduced for dealing with a large table. The real examples in
Section 8 show that the 8 by 5 and 10 by 3 tables can be reduced to 3 by
3 and 2 by 2 tables, respectively, giving a simple and clear interpretation of
the data.
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Table 1: Collapsed data

Collapsed table Simple departure measure

Cluster G1(1) G2(2) G3(3, 4, 5) G1(1) G2(2) G3(3, 4, 5)

G1(1) 128 52 107 0.88 1.58 0.98

G2(2, · · · , 7) 610 110 356 1.12 0.89 0.87

G8(8) 48 16 127 0.50 0.73 1.75
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Table 2: Number of cancer patients cross classified by occupation and severity of illness
with fitted values on the right side

Severity Occupation Slight Medium Serious Total

1. Professional & technical workers 148 123.3 444 473.9 86 80.8 678
148.5 452.4 77.1

2. Manager and officials 111 93.1 352 357.9 49 60.0 512
112.1 341.6 58.2

3. Clerical and related workers 645 524.6 1911 2015.7 328 343.7 2884
631.4 1924.4 328.1

4. Sales workers 165 191.9 771 737.4 119 125.7 1055
160.7 764.0 130.3

5. Formers, lumbermen, 383 458.9 1829 1763.4 311 300.6 2523
fisherman, quarrymen & etc. 384.3 1827.2 311.5

6. Workers in transport and 96 79.3 293 304.7 47 52.0 436
communication systems 95.5 290.9 49.6

7. Craftsmen 98 88.4 330 339.7 58 57.9 486
106.4 324.3 55.3

8. Production process workers 199 223.4 874 858.3 155 146.3 1228
187.1 889.3 151.6

9. Service workers 59 52.4 199 201.3 30 34.3 288
63.1 192.2 32.8

10. Persons without regular 262 330.7 1320 1270.7 236 216.6 1818
occupations 276.9 1316.6 224.5

Total 2166 8323 1419 11908
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Table 3: Collapsed data

Collapsed table Simple departure measure

Cluster Slight Medium & Serious Slight Medium & Serious

G1(1, 2, 3, 4, 7, 9) 1157 4127 1.20 0.95

G2(4, 5, 8, 10) 1009 5615 0.84 1.04

19


